INTEGRAL P-ADIC HODGE THEORY, TALK 2 (PERFECTOID
RINGS, A,y AND THE PRO-ETALE SITE)

POL VAN HOFTEN (NOTES BY JAMES NEWTON)

1. WITT VECTORS, Aj,f AND INTEGRAL PERFECTOID RINGS

The first part of the talk will cover Witt vectors, Aj,¢ and integral perfectoid
rings, following section 3 of [1].

1.1. Setting. We fix a prime p, and consider rings .S which are m-adically complete
and separated with respect to an element 7|p. We define the tilt

b_ .
" = lim S/pS

and remark that

as monoids (the usual proof works).

Examples.
e« S=17, 58 =F,
e If S = 7,[T] (the p-adic completion) then S/pS = F,[T] and S* = (F,[T])P=f =
F,.
o I S = Z° = Z[ji,=] then S/pS = F,[TV/?™]/T and §” = F,[[T/7™]].

Definition 1.2. A;.;(S) = W(S).

Applying the definition to the above examples, we get (respectively):
o Auni(S) = W(E,)
o Aie(S) = W(Iﬁ‘/p)\
o Ain(S) = Zp[[TV/7]].
We have a map 6 : Aijy(S) — S which lifts the map S> — S/pS given by
projecting to the bottom component of the inverse limit. We can define 6 as

0> lalp' | = alp'

i>0 i>0

where ()* is the multiplicative map S — S given by considering S” = T&lx'_)xp S
and projecting onto the first component.
When S is perfectoid (definition is to come), the map 6 will be surjective (this
will follow from surjectivity of S* — S/pS).
Next we are going to define maps 6, : Ai,(S) — W,.(S) (with 6, = ). First we
have some recollections on Witt vectors.
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1.3. Witt vectors. For aring A, we can define the (p-typical) Witt vectors W (A).
As sets we have W(A) = AN. The Witt vectors come equipped with ring homo-
morphisms (the ghost components) for r > 0:

W (A) A
T r—1
((lo,...7ar,...)l—)a8 erazl) JF"'erTar
Truncating to the first r entries (aq,...,a,—1), we get the truncated Witt ring

W,.(A). We have obvious restriction maps R : W,.;1(A4) — W,.(A) and also a Witt
vector Frobenius F' : W, ;1(A) — W,.(4). When A has characteristic p, F' is simply
given by F(ag,...,a,) = (af,...,al_,), so we can write Rp = ¢R = F, where ¢ is
the map raising each component to the pth power. On ghost components, we have

wi(Fx) = wiy1(x) for all x € Wygq and @ <7 — 1.
Remark 1.4. We have Ay (S) = Jm W,(S”). Since R'¢* = F* and S° is perfect,
the maps
¢ Wi(S") — Wi(S")
induce an isomorphism

P> : y?mwr(sb) s%nwr(sb).

Taking Witt vectors commutes with inverse limits so we have

lim W,(8”) = lim lim W, (S/pS) = lim lim W,.(S/pS).
F F ¢ ¢ F

Finally, ¢ is an automorphism of @F W,.(S/pS) (use oR = R¢p = F) so we
conclude that Ajne(S) = @F W,.(S/pS).

Remark 1.5. The multiplicative map () : S* — S extends to a multiplicative
bijection S” — 'mx . S (inverse to the canonical multiplicative map induced
by S — S/pS). At the level of Witt vectors, the canonical ring homomorphism
lim | W,.(S) — Hm W, (S/pS) is in fact an isomorphism. So we have

Ane(S) = y%nwr(sy

Projecting to the rth component in the inverse limit, we obtain a ring homomor-
phism
0, : Aips(S) = WL.(S).

Definition 1.6. We set 6, = 6, o ¢". Here ¢ = W(¢), the map induced by
functoriality from the p-power map on S”.

Lemma 1.7. We have 0,([z]) = [z"] forz € S” where we write z = (@, 2D .. ) €
fm S. We therefore have 0,([x]) = [2(?)] = [#!] and in particular 6, = 6.

1.8. Integral perfectoid rings.

Definition 1.9. S is (integral) perfectoid if S is m-adically complete and:
(1) =Plp
(2) The Frobenius ¢ : S/pS — S/pS is surjective
(3) 6: Ajne(S) — S has principal kernel
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Examples.
o 7°¢
. ZzyC<T1/p°°>
The p-adic completion of Z,[[X]] ® Z,[p*/?™, X1/P7]
e If Ais an integral domain with p ¢ A, the p-adic completion of an absolute
integral closure of A is a perfectoid ring.

Lemma 1.10. The following are equivalent:
(1) ¢:S/pS — S/pS is surjective
(2) F:W,1(S) = W,.(S) is surjective for all r
(3) Or : Aine(S) — W,.(S) is surjective for all r

Remark 1.11. If F': W5(S) — S is surjective, then part (1) in the above holds. Use

the fact that F'(ag,a1) = ab + pa.

Lemma 1.12. If 7 is not a zero divisor, ¢ is surjective and ker(0) is principal then
¢:S/mS — S/7PS

is an isomorphism.

Now we consider S = Ok, where K is a perfectoid field (the old definition) with
ppe= C K and a fixed compatible system of p-power roots of unity ((,:). Then we
define € € S” by € = (1,(p, (p2, - -.) and so [€] € Aine(S).

Fact: ker(f) is generated by 1 + [¢'/P] + --- + [¢'/P]P~1. The map
O := T&n@r s Agns — W(S)
has kernel generated by 1 = [e] —1, and if K is spherically complete 0, is surjective.
To compare with the more standard perfectoid terminology: if S is perfectoid

and flat over Z, then (S[1],9) is a perfectoid Huber pair — the ideal defining the
topology on S is (7).

2. THE PRO-ETALE SITE OF AN ADIC SPACE

All our adic spaces will be locally Noetherian adic spaces over Spa(Q,,Zp), so
in particular they will be analytic.

Definition 2.1. A map f : X — Y of adic spaces is finite étale if it is affinoid
and for an open cover of Y by affinoids Spa(A, A1) the pull back Spa(B, B+) of X
is finite étale over Spa(A4, AT) — i.e. A — B is finite étale and BT is the integral
closure of A* in B.

Definition 2.2. A map of adic spaces f : X — Y is étale if Vo € X there is an
open neighbourhood x € U C X and f(U) C V open in Y such that f factors as

U—— T
(2.2.0) S
\ !

where 7 is an open immersion and g is finite étale.

Remark 2.3. This definition does not work in algebraic geometry! (Note by Pol: I
am now unsure of this)
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We obtain sites Xyey C Xo¢ with coverings jointly surjective families of (finite)
étale maps.

Now we want to introduce the pro-étale site. Two advantages of this will be:
firstly inverse limits of sheaves will behave well, so we can compute [-adic cohomol-
ogy groups as genuine cohomology groups of a sheaf Z; = lim 7Z/I"7Z, rather than
inverse limits of cohomology groups. Secondly, every adic space will be pro-étale-
locally perfectoid.

The pro-étale site is sandwiched between the pro-categories given by towers of
finite étale, or étale, maps:

pro — Xfét C Xproét C pro — Xét'

We don’t want to take the whole of pro — X because it includes maps which
are not open (for example, think of a tower of discs of shrinking radii).

2.4. Pro-categories and the pro-étale site. Our index categories I are co-
filtered: this meams we have the following two properties:
e For every pair of objects i, j of I we have another object £ with morphisms
k—iand k — j.
e For every pair of morphisms f,g : ¢ — j in I we have an object k£ and a
morphism h : k — ¢ such that fh = gh.
Now given a category C', the objects of the pro-category pro— C are functors I — C
from (small) co-filtered categories I. Given U € pro — X4 we write U = l&nz "U;
(i varies over objects of the index category I).
Definition 2.5. We define a full subcategory Xyt C pro — Xet by saying that U
is in Xprost if U is isomorphic to “@i U, with
(1) U; — X étale for all ¢ (this is automatic)
(2) U; — Uj finite étale and surjective for all i — j.

Remark 2.6. We can modify the second condition in the above definition by sub-
stituting ‘for all’ with ‘for a cofinal system of’, and get an equivalent definition.

Definition 2.7. Given U = ¢ wl "U; in Xproer we define the topological space
Definition 2.8. (1) Given a morphism U — V in X,,0e¢ We say that U — V

is étale (resp. finite étale) if there exists Uy — V; an étale (resp. finite étale)
map of adic spaces and V' — V, (the constant pro-object given by V5) such
that U = Uy xy, V.

(2) We say that U — V is pro-étale if U l&nk Ay (here Ap € Xprost) With
A — V étale and A, — Ay finite étale surjective.

(3) Finally, we define coverings in Xpet to be {U; — V} such that the |U;
cover V, each map U; — V is pro-étale, plus a set-theoretic condition (which
is automatic if the inverse limits are over countable index sets).

Proposition 2.9. o This definition of covering makes Xproet into a site — in
particular, pro-étale maps are preserved under composition and base change.
e Pro-étale maps are open (i.e. |f|: |U| — |V| is open)
o Giwen V C |U| open, we can find W — U in Xproer with |W|=V.
e There is a map of sites

v Xproét — Xét
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(induced by the functor in the other direction, taking something étale over
X to the associated constant pro-object). In particular we have functors
Vs, V™ on the categories of abelian sheaves.
o If F € Ab(X4) is a sheaf of abelian groups (and X is qcgs) we have
HY(Xet, F) = H (Xproet, v F).
o If F € Ab(X¢&) the natural adjunction map F — Rv,v*F is an isomor-
phism.
Remark 2.10. If U = “lim 7 Spa(A;, A]) then v* F(U) = lim, F(Spa(A;, A)).
2.11. Sheaves on the pro-étale site. Here are a bunch of sheaves on Xpoet:
e OF (we have OF (¢ lim, Spa(4;, A})) = lim, Af)
d (?\X’ O;_( :yLan_(/pnv Ox = O}[%]
b O;b = Md) O}/p
o Ajrx = W(03,)

Remark 2.12. In general the sections of these sheaves are not easy to compute:
O;E(U ) may not equal the p-adic completion of hgl A;". But they do behave well
on affinoid perfectoids.

Definition 2.13. U = “lim ” Spa(A;, A}) is affinoid perfectoid if

— 1 —

lim A [~], lim A}

(ATl )
is a perfectoid Huber pair.
Ezample 2.13.1. Let X,, = Spa(K(T*V/P"), O (T+/P")) for K a perfectoid field.
Set X = X;. Then “ Mn "Xy, is an aflinoid perfectoid in Xprost.
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