INTEGRAL P-ADIC HODGE THEORY, TALK 2 (PERFECTOID RINGS, A_{inf} AND THE PRO-ÉTALE SITE)

POL VAN HOFTEN (NOTES BY JAMES NEWTON)

1. Witt vectors, $\mathbf{A}_{\mathrm{inf}}$ and integral perfectoid rings

The first part of the talk will cover Witt vectors, \mathbf{A}_{inf} and integral perfectoid rings, following section 3 of [1].

1.1. Setting. We fix a prime p, and consider rings S which are π -adically complete and separated with respect to an element $\pi | p$. We define the *tilt*

$$S^{\flat} = \lim_{x \mapsto x^p} S/pS$$

and remark that

$$S^b = \lim_{x \mapsto x^p} S$$

as monoids (the usual proof works).

Examples.

- $S = \mathbb{Z}_p, S^{\flat} = \mathbb{F}_p$ • If $S = \widehat{\mathbb{Z}_p[T]}$ (the *p*-adic completion) then $S/pS = \mathbb{F}_p[T]$ and $S^{\flat} = (\mathbb{F}_p[T])^{\text{perf}} =$ • If $S = \mathbb{Z}_p^{\text{cyc}} = \widehat{\mathbb{Z}_p[\mu_{p^{\infty}}]}$ then $S/pS = \mathbb{F}_p[T^{1/p^{\infty}}]/T$ and $S^{\flat} = \mathbb{F}_p[[T^{1/p^{\infty}}]].$

Definition 1.2. $\mathbf{A}_{inf}(S) = W(S^{\flat}).$

Applying the definition to the above examples, we get (respectively):

- A_{inf}(S) = W(F_p)
 A_{inf}(S) = W(F_p)
- $\mathbf{A}_{inf}(S) = \mathbb{Z}_p[\overline{[T^{1/p^{\infty}}]}].$

We have a map θ : $\mathbf{A}_{inf}(S) \to S$ which lifts the map $S^{\flat} \to S/pS$ given by projecting to the bottom component of the inverse limit. We can define θ as

$$\theta\left(\sum_{i\geq 0} [a_i]p^i\right) = \sum_{i\geq 0} a_i^{\sharp} p^i$$

where $()^{\sharp}$ is the multiplicative map $S^{\flat} \to S$ given by considering $S^{\flat} = \lim_{m \to \infty} S^{\flat}$ and projecting onto the first component.

When S is perfected (definition is to come), the map θ will be surjective (this will follow from surjectivity of $S^{\flat} \to S/pS$).

Next we are going to define maps $\theta_r : \mathbf{A}_{inf}(S) \to W_r(S)$ (with $\theta_1 = \theta$). First we have some recollections on Witt vectors.

1.3. Witt vectors. For a ring A, we can define the (*p*-typical) Witt vectors W(A). As sets we have $W(A) = A^{\mathbb{N}}$. The Witt vectors come equipped with ring homomorphisms (the *ghost components*) for $r \geq 0$:

$$W(A) \xrightarrow{\omega_r} A$$
$$(a_0, \dots, a_r, \dots) \mapsto a_0^{p^r} + p a_1^{p^{r-1}} + \dots + p^r a_r$$

Truncating to the first r entries (a_0, \ldots, a_{r-1}) , we get the truncated Witt ring $W_r(A)$. We have obvious restriction maps $R: W_{r+1}(A) \to W_r(A)$ and also a Witt vector Frobenius $F: W_{r+1}(A) \to W_r(A)$. When A has characteristic p, F is simply given by $F(a_0, \ldots, a_r) = (a_0^p, \ldots, a_{r-1}^p)$, so we can write $R\phi = \phi R = F$, where ϕ is the map raising each component to the pth power. On ghost components, we have $\omega_i(Fx) = \omega_{i+1}(x)$ for all $x \in W_{r+1}$ and $i \leq r-1$.

Remark 1.4. We have $\mathbf{A}_{inf}(S) = \varprojlim_R W_r(S^{\flat})$. Since $R^i \phi^i = F^i$ and S^{\flat} is perfect, the maps

$$\phi^r: W_r(S^\flat) \to W_r(S^\flat)$$

induce an isomorphism

$$\phi^{\infty}: \varprojlim_{F} W_{r}(S^{\flat}) \xrightarrow{\sim} \varprojlim_{R} W_{r}(S^{\flat}).$$

Taking Witt vectors commutes with inverse limits so we have

$$\lim_{F} W_r(S^{\flat}) = \lim_{F} \lim_{\phi} W_r(S/pS) = \lim_{\phi} \lim_{\phi} W_r(S/pS).$$

Finally, ϕ is an automorphism of $\varprojlim_F W_r(S/pS)$ (use $\phi R = R\phi = F$) so we conclude that $\mathbf{A}_{\inf}(S) = \varprojlim_F W_r(S/pS)$.

Remark 1.5. The multiplicative map $()^{\sharp} : S^{\flat} \to S$ extends to a multiplicative bijection $S^{\flat} \to \lim_{x \mapsto x^{p}} S$ (inverse to the canonical multiplicative map induced by $S \to S/pS$). At the level of Witt vectors, the canonical ring homomorphism $\lim_{x \to w} W_{r}(S) \to \lim_{x \to w} W_{r}(S/pS)$ is in fact an isomorphism. So we have

$$\mathbf{A}_{\inf}(S) = \varprojlim_F W_r(S).$$

Projecting to the rth component in the inverse limit, we obtain a ring homomorphism

$$\theta_r : \mathbf{A}_{\inf}(S) \to W_r(S).$$

Definition 1.6. We set $\theta_r = \tilde{\theta}_r \circ \phi^r$. Here $\phi = W(\phi)$, the map induced by functoriality from the *p*-power map on S^{\flat} .

Lemma 1.7. We have $\tilde{\theta}_r([x]) = [x^{(r)}]$ for $x \in S^{\flat}$ where we write $x = (x^{(0)}, x^{(1)}, \ldots) \in \lim_{x \to x^p} S$. We therefore have $\theta_r([x]) = [x^{(0)}] = [x^{\sharp}]$ and in particular $\theta_1 = \theta$.

1.8. Integral perfectoid rings.

Definition 1.9. S is (integral) perfectoid if S is π -adically complete and:

- (1) $\pi^{p}|p$
- (2) The Frobenius $\phi: S/pS \to S/pS$ is surjective
- (3) $\theta : \mathbf{A}_{inf}(S) \to S$ has principal kernel

Examples.

- $\mathbb{Z}_p^{\text{cyc}}$
- $\mathbb{Z}_{p}^{r}\langle T^{1/p^{\infty}}\rangle$
- The *p*-adic completion of $\mathbb{Z}_p[[X]] \otimes \mathbb{Z}_p[p^{1/p^{\infty}}, X^{1/p^{\infty}}]$
- If A is an integral domain with p ∉ A[×], the p-adic completion of an absolute integral closure of A is a perfectoid ring.

Lemma 1.10. The following are equivalent:

- (1) $\phi: S/pS \to S/pS$ is surjective
- (2) $F: W_{r+1}(S) \to W_r(S)$ is surjective for all r
- (3) $\theta_r : \mathbf{A}_{inf}(S) \to W_r(S)$ is surjective for all r

Remark 1.11. If $F: W_2(S) \to S$ is surjective, then part (1) in the above holds. Use the fact that $F(a_0, a_1) = a_0^p + pa_1$.

Lemma 1.12. If π is not a zero divisor, ϕ is surjective and ker(θ) is principal then

 $\phi: S/\pi S \to S/\pi^p S$

is an isomorphism.

Now we consider $S = \mathcal{O}_K$, where K is a perfectoid field (the old definition) with $\mu_{p^{\infty}} \subset K$ and a fixed compatible system of *p*-power roots of unity (ζ_{p^i}) . Then we define $\epsilon \in S^{\flat}$ by $\epsilon = (1, \zeta_p, \zeta_{p^2}, \ldots)$ and so $[\epsilon] \in \mathbf{A}_{inf}(S)$.

Fact: ker(θ) is generated by $1 + [\epsilon^{1/p}] + \cdots + [\epsilon^{1/p}]^{p-1}$. The map

$$\theta_{\infty} := \varprojlim_{r} \theta_{r} : \mathbf{A}_{\inf} \to W(S)$$

has kernel generated by $\mu = [\epsilon] - 1$, and if K is spherically complete θ_{∞} is surjective.

To compare with the more standard perfectoid terminology: if S is perfectoid and flat over \mathbb{Z}_p then $(S[\frac{1}{\pi}], S)$ is a perfectoid Huber pair — the ideal defining the topology on S is (π) .

2. The pro-étale site of an adic space

All our adic spaces will be locally Noetherian adic spaces over $\text{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$, so in particular they will be analytic.

Definition 2.1. A map $f : X \to Y$ of adic spaces is finite étale if it is affinoid and for an open cover of Y by affinoids $\text{Spa}(A, A^+)$ the pull back $\text{Spa}(B, B^+)$ of X is finite étale over $\text{Spa}(A, A^+)$ — i.e. $A \to B$ is finite étale and B^+ is the integral closure of A^+ in B.

Definition 2.2. A map of adic spaces $f : X \to Y$ is étale if $\forall x \in X$ there is an open neighbourhood $x \in U \subset X$ and $f(U) \subset V$ open in Y such that f factors as

$$(2.2.0) \qquad \qquad \begin{array}{c} U \stackrel{i}{\smile} W \\ \swarrow f \\ V \end{array}$$

where i is an open immersion and g is finite étale.

Remark 2.3. This definition does not work in algebraic geometry! (Note by Pol: I am now unsure of this)

We obtain sites $X_{f\acute{e}t} \subset X_{\acute{e}t}$ with coverings jointly surjective families of (finite) étale maps.

Now we want to introduce the pro-étale site. Two advantages of this will be: firstly inverse limits of sheaves will behave well, so we can compute *l*-adic cohomology groups as genuine cohomology groups of a sheaf $\underline{\mathbb{Z}}_l = \lim_n \underline{\mathbb{Z}}/l^n \underline{\mathbb{Z}}$, rather than inverse limits of cohomology groups. Secondly, every adic space will be pro-étalelocally perfectoid.

The pro-étale site is sandwiched between the pro-categories given by towers of finite étale, or étale, maps:

 $\operatorname{pro} - X_{f\acute{e}t} \subset X_{\operatorname{pro\acute{e}t}} \subset \operatorname{pro} - X_{\acute{e}t}.$

We don't want to take the whole of pro $-X_{\text{\acute{e}t}}$ because it includes maps which are not open (for example, think of a tower of discs of shrinking radii).

2.4. Pro-categories and the pro-étale site. Our index categories I are co-filtered: this means we have the following two properties:

- For every pair of objects i, j of I we have another object k with morphisms $k \to i$ and $k \to j$.
- For every pair of morphisms $f, g: i \to j$ in I we have an object k and a morphism $h: k \to i$ such that fh = gh.

Now given a category C, the objects of the pro-category pro-C are functors $I \to C$ from (small) co-filtered categories I. Given $U \in \text{pro} - X_{\text{\acute{e}t}}$ we write $U = \lim_{i \to i} U_i^i$ (*i* varies over objects of the index category I).

Definition 2.5. We define a full subcategory $X_{\text{proét}} \subset \text{pro} - X_{\text{\acute{e}t}}$ by saying that U is in $X_{\text{pro\acute{e}t}}$ if U is isomorphic to " $\lim_{i \to i} U_i$ with

- (1) $U_i \to X$ étale for all *i* (this is automatic)
- (2) $U_i \to U_j$ finite étale and surjective for all $i \to j$.

Remark 2.6. We can modify the second condition in the above definition by substituting 'for all' with 'for a cofinal system of', and get an equivalent definition.

Definition 2.7. Given $U = \lim_{i \in I} U_i$ in $X_{\text{pro\acute{e}t}}$ we define the topological space $|U| = \lim_{i \in I} |U_i|$.

- **Definition 2.8.** (1) Given a morphism $U \to V$ in $X_{\text{pro\acute{e}t}}$ we say that $U \to V$ is étale (resp. finite étale) if there exists $U_0 \to V_0$ an étale (resp. finite étale) map of adic spaces and $V \to \underline{V}_0$ (the constant pro-object given by V_0) such that $U \cong \underline{U}_0 \times_{\underline{V}_0} V$.
 - (2) We say that $U \to V$ is pro-étale if $U \cong \lim_{k \to k} A_k$ (here $A_k \in X_{\text{proét}}$) with $A_k \to V$ étale and $A_k \to A_{k'}$ finite étale surjective.
 - (3) Finally, we define coverings in $X_{\text{pro\acute{e}t}}$ to be $\{U_i \to V\}$ such that the $|U_i|$ cover V, each map $U_i \to V$ is pro-étale, plus a set-theoretic condition (which is automatic if the inverse limits are over countable index sets).

Proposition 2.9. • This definition of covering makes $X_{\text{proét}}$ into a site — in particular, pro-étale maps are preserved under composition and base change.

- Pro-étale maps are open (i.e. $|f|:|U| \to |V|$ is open)
- Given $V \subset |U|$ open, we can find $W \to U$ in $X_{\text{pro}\acute{e}t}$ with $|W| \cong V$.
- There is a map of sites

$$\nu: X_{\operatorname{pro}\acute{e}t} \to X_{\acute{e}t}$$

(induced by the functor in the other direction, taking something étale over X to the associated constant pro-object). In particular we have functors ν_*, ν^* on the categories of abelian sheaves.

• If $\mathcal{F} \in Ab(X_{\acute{e}t})$ is a sheaf of abelian groups (and X is qcqs) we have

 $H^{i}(X_{\acute{e}t},\mathcal{F}) = H^{i}(X_{\mathrm{pro}\acute{e}t},\nu^{*}\mathcal{F}).$

If *F* ∈ Ab(X_{ét}) the natural adjunction map *F* → Rν_{*}ν^{*}*F* is an isomorphism.

Remark 2.10. If $U = \lim_{i \to i} \operatorname{Spa}(A_i, A_i^+)$ then $\nu^* \mathcal{F}(U) = \varinjlim_i \mathcal{F}(\operatorname{Spa}(A_i, A_i^+))$.

2.11. Sheaves on the pro-étale site. Here are a bunch of sheaves on $X_{\text{proét}}$:

- \mathcal{O}_X^+ (we have $\mathcal{O}_X^+(``\varprojlim_i``\operatorname{Spa}(A_i, A_i^+)) = \varinjlim_i A_i^+)$
- $\mathcal{O}_X, \, \widehat{\mathcal{O}}_X^+ = \varprojlim \mathcal{O}_X^+ / p^n, \, \widehat{\mathcal{O}}_X = \widehat{\mathcal{O}}_X^+ [\frac{1}{p}]$
- $\widehat{\mathcal{O}}_{X^{\flat}}^{+} = \varprojlim_{\phi} \mathcal{O}_{X}^{+}/p$
- $\mathbf{A}_{\inf,X} = W(\widehat{\mathcal{O}}_{X^{\flat}}^+)$

Remark 2.12. In general the sections of these sheaves are not easy to compute: $\widehat{\mathcal{O}}_X^+(U)$ may not equal the *p*-adic completion of $\varinjlim_i A_i^+$. But they do behave well on affinoid perfectoids.

Definition 2.13. $U = \lim_{i \to i} \operatorname{Spa}(A_i, A_i^+)$ is affinoid perfectoid if

$$(\underbrace{\lim_{i \to i} A_i^+}_i [\frac{1}{p}], \underbrace{\lim_{i \to i} A_i^+}_i)$$

is a perfectoid Huber pair.

Example 2.13.1. Let $X_n = \text{Spa}(K\langle T^{\pm 1/p^n} \rangle, \mathcal{O}_K\langle T^{\pm 1/p^n} \rangle)$ for K a perfectoid field. Set $X = X_1$. Then " \varprojlim_n " X_n is an affinoid perfectoid in $X_{\text{pro\acute{e}t}}$.

References

[1] Bhatt, B., Morrow, M. and Scholze, P. Integral p-adic Hodge theory, arXiv:1602.03148.