
INTEGRAL P -ADIC HODGE THEORY, TALK 2 (PERFECTOID
RINGS, Ainf AND THE PRO-ÉTALE SITE)

POL VAN HOFTEN (NOTES BY JAMES NEWTON)

1. Witt vectors, Ainf and integral perfectoid rings

The first part of the talk will cover Witt vectors, Ainf and integral perfectoid
rings, following section 3 of [1].

1.1. Setting. We fix a prime p, and consider rings S which are π-adically complete
and separated with respect to an element π|p. We define the tilt

S[ = lim←−
x 7→xp

S/pS

and remark that
Sb = lim←−

x 7→xp

S

as monoids (the usual proof works).

Examples.
• S = Zp, S[ = Fp
• If S = Ẑp[T ] (the p-adic completion) then S/pS = Fp[T ] and S[ = (Fp[T ])perf =
Fp.

• If S = Zcyc
p = ̂Zp[µp∞ ] then S/pS = Fp[T 1/p∞ ]/T and S[ = Fp[[T 1/p∞ ]].

Definition 1.2. Ainf(S) =W (S[).

Applying the definition to the above examples, we get (respectively):
• Ainf(S) =W (Fp)
• Ainf(S) =W (Fp)
• Ainf(S) =

̂Zp[[T 1/p∞ ]].
We have a map θ : Ainf(S) → S which lifts the map S[ → S/pS given by

projecting to the bottom component of the inverse limit. We can define θ as

θ

∑
i≥0

[ai]p
i

 =
∑
i≥0

a]ip
i

where ()] is the multiplicative map S[ → S given by considering S[ = lim←−x7→xp
S

and projecting onto the first component.
When S is perfectoid (definition is to come), the map θ will be surjective (this

will follow from surjectivity of S[ → S/pS).
Next we are going to define maps θr : Ainf(S)→Wr(S) (with θ1 = θ). First we

have some recollections on Witt vectors.
1
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1.3. Witt vectors. For a ring A, we can define the (p-typical) Witt vectorsW (A).
As sets we have W (A) = AN. The Witt vectors come equipped with ring homo-
morphisms (the ghost components) for r ≥ 0:

W (A)
ωr→ A

(a0, . . . , ar, . . .) 7→ ap
r

0 + pap
r−1

1 + · · ·+ prar

Truncating to the first r entries (a0, . . . , ar−1), we get the truncated Witt ring
Wr(A). We have obvious restriction maps R : Wr+1(A)→ Wr(A) and also a Witt
vector Frobenius F :Wr+1(A)→Wr(A). When A has characteristic p, F is simply
given by F (a0, . . . , ar) = (ap0, . . . , a

p
r−1), so we can write Rφ = φR = F , where φ is

the map raising each component to the pth power. On ghost components, we have
ωi(Fx) = ωi+1(x) for all x ∈Wr+1 and i ≤ r − 1.

Remark 1.4. We have Ainf(S) = lim←−RWr(S
[). Since Riφi = F i and S[ is perfect,

the maps
φr :Wr(S

[)→Wr(S
[)

induce an isomorphism

φ∞ : lim←−
F

Wr(S
[)
∼→ lim←−

R

Wr(S
[).

Taking Witt vectors commutes with inverse limits so we have

lim←−
F

Wr(S
[) = lim←−

F

lim←−
φ

Wr(S/pS) = lim←−
φ

lim←−
F

Wr(S/pS).

Finally, φ is an automorphism of lim←−F Wr(S/pS) (use φR = Rφ = F ) so we
conclude that Ainf(S) = lim←−F Wr(S/pS).

Remark 1.5. The multiplicative map ()] : S[ → S extends to a multiplicative
bijection S[ → lim←−x 7→xp

S (inverse to the canonical multiplicative map induced
by S → S/pS). At the level of Witt vectors, the canonical ring homomorphism
lim←−F Wr(S)→ lim←−F Wr(S/pS) is in fact an isomorphism. So we have

Ainf(S) = lim←−
F

Wr(S).

Projecting to the rth component in the inverse limit, we obtain a ring homomor-
phism

θ̃r : Ainf(S)→Wr(S).

Definition 1.6. We set θr = θ̃r ◦ φr. Here φ = W (φ), the map induced by
functoriality from the p-power map on S[.

Lemma 1.7. We have θ̃r([x]) = [x(r)] for x ∈ S[ where we write x = (x(0), x(1), . . .) ∈
lim←−x7→xp

S. We therefore have θr([x]) = [x(0)] = [x]] and in particular θ1 = θ.

1.8. Integral perfectoid rings.

Definition 1.9. S is (integral) perfectoid if S is π-adically complete and:
(1) πp|p
(2) The Frobenius φ : S/pS → S/pS is surjective
(3) θ : Ainf(S)→ S has principal kernel
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Examples.
• Zcyc

p

• Zcyc
p 〈T 1/p∞〉

• The p-adic completion of Zp[[X]]⊗ Zp[p1/p
∞,, X1/p∞ ]

• If A is an integral domain with p /∈ A×, the p-adic completion of an absolute
integral closure of A is a perfectoid ring.

Lemma 1.10. The following are equivalent:
(1) φ : S/pS → S/pS is surjective
(2) F :Wr+1(S)→Wr(S) is surjective for all r
(3) θr : Ainf(S)→Wr(S) is surjective for all r

Remark 1.11. If F :W2(S)→ S is surjective, then part (1) in the above holds. Use
the fact that F (a0, a1) = ap0 + pa1.

Lemma 1.12. If π is not a zero divisor, φ is surjective and ker(θ) is principal then

φ : S/πS → S/πpS

is an isomorphism.

Now we consider S = OK , where K is a perfectoid field (the old definition) with
µp∞ ⊂ K and a fixed compatible system of p-power roots of unity (ζpi). Then we
define ε ∈ S[ by ε = (1, ζp, ζp2 , . . .) and so [ε] ∈ Ainf(S).

Fact: ker(θ) is generated by 1 + [ε1/p] + · · ·+ [ε1/p]p−1. The map

θ∞ := lim←−
r

θr : Ainf →W (S)

has kernel generated by µ = [ε]−1, and if K is spherically complete θ∞ is surjective.
To compare with the more standard perfectoid terminology: if S is perfectoid

and flat over Zp then (S[ 1π ], S) is a perfectoid Huber pair — the ideal defining the
topology on S is (π).

2. The pro-étale site of an adic space

All our adic spaces will be locally Noetherian adic spaces over Spa(Qp,Zp), so
in particular they will be analytic.

Definition 2.1. A map f : X → Y of adic spaces is finite étale if it is affinoid
and for an open cover of Y by affinoids Spa(A,A+) the pull back Spa(B,B+) of X
is finite étale over Spa(A,A+) — i.e. A → B is finite étale and B+ is the integral
closure of A+ in B.

Definition 2.2. A map of adic spaces f : X → Y is étale if ∀x ∈ X there is an
open neighbourhood x ∈ U ⊂ X and f(U) ⊂ V open in Y such that f factors as

(2.2.0)
U W

V

f

i

g

where i is an open immersion and g is finite étale.

Remark 2.3. This definition does not work in algebraic geometry! (Note by Pol: I
am now unsure of this)
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We obtain sites Xfét ⊂ Xét with coverings jointly surjective families of (finite)
étale maps.

Now we want to introduce the pro-étale site. Two advantages of this will be:
firstly inverse limits of sheaves will behave well, so we can compute l-adic cohomol-
ogy groups as genuine cohomology groups of a sheaf Zl = lim←−n Z/l

nZ, rather than
inverse limits of cohomology groups. Secondly, every adic space will be pro-étale-
locally perfectoid.

The pro-étale site is sandwiched between the pro-categories given by towers of
finite étale, or étale, maps:

pro−Xfét ⊂ Xproét ⊂ pro−Xét.
We don’t want to take the whole of pro − Xét because it includes maps which

are not open (for example, think of a tower of discs of shrinking radii).

2.4. Pro-categories and the pro-étale site. Our index categories I are co-
filtered: this meams we have the following two properties:

• For every pair of objects i, j of I we have another object k with morphisms
k → i and k → j.

• For every pair of morphisms f, g : i → j in I we have an object k and a
morphism h : k → i such that fh = gh.

Now given a category C, the objects of the pro-category pro−C are functors I → C
from (small) co-filtered categories I. Given U ∈ pro−Xét we write U = “ lim←−i ”Ui
(i varies over objects of the index category I).

Definition 2.5. We define a full subcategory Xproét ⊂ pro−Xét by saying that U
is in Xproét if U is isomorphic to “ lim←−i ”Ui with

(1) Ui → X étale for all i (this is automatic)
(2) Ui → Uj finite étale and surjective for all i→ j.

Remark 2.6. We can modify the second condition in the above definition by sub-
stituting ‘for all’ with ‘for a cofinal system of’, and get an equivalent definition.

Definition 2.7. Given U = “ lim←−i ”Ui in Xproét we define the topological space
|U | = lim←−i∈I |Ui|.

Definition 2.8. (1) Given a morphism U → V in Xproét we say that U → V
is étale (resp. finite étale) if there exists U0 → V0 an étale (resp. finite étale)
map of adic spaces and V → V 0 (the constant pro-object given by V0) such
that U ∼= U0 ×V 0

V .
(2) We say that U → V is pro-étale if U ∼= lim←−k Ak (here Ak ∈ Xproét) with

Ak → V étale and Ak → Ak′ finite étale surjective.
(3) Finally, we define coverings in Xproét to be {Ui → V } such that the |Ui|

cover V , each map Ui → V is pro-étale, plus a set-theoretic condition (which
is automatic if the inverse limits are over countable index sets).

Proposition 2.9. • This definition of covering makes Xproét into a site — in
particular, pro-étale maps are preserved under composition and base change.

• Pro-étale maps are open (i.e. |f | : |U | → |V | is open)
• Given V ⊂ |U | open, we can find W → U in Xproét with |W | ∼= V .
• There is a map of sites

ν : Xproét → Xét
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(induced by the functor in the other direction, taking something étale over
X to the associated constant pro-object). In particular we have functors
ν∗, ν

∗ on the categories of abelian sheaves.
• If F ∈ Ab(Xét) is a sheaf of abelian groups (and X is qcqs) we have

Hi(Xét,F) = Hi(Xproét, ν
∗F).

• If F ∈ Ab(Xét) the natural adjunction map F → Rν∗ν
∗F is an isomor-

phism.

Remark 2.10. If U = “ lim←−i ” Spa(Ai, A
+
i ) then ν

∗F(U) = lim−→i
F(Spa(Ai, A+

i )).

2.11. Sheaves on the pro-étale site. Here are a bunch of sheaves on Xproét:
• O+

X (we have O+
X(“ lim←−i ” Spa(Ai, A

+
i )) = lim−→i

A+
i )

• OX , Ô+
X = lim←−O

+
X/p

n, ÔX = Ô+
X [ 1p ]

• Ô+
X[ = lim←−φO

+
X/p

• Ainf,X =W (Ô+
X[)

Remark 2.12. In general the sections of these sheaves are not easy to compute:
Ô+
X(U) may not equal the p-adic completion of lim−→i

A+
i . But they do behave well

on affinoid perfectoids.

Definition 2.13. U = “ lim←−i ” Spa(Ai, A
+
i ) is affinoid perfectoid if

( ̂lim−→
i

A+
i [

1

p
], ̂lim−→

i

A+
i )

is a perfectoid Huber pair.

Example 2.13.1. Let Xn = Spa(K〈T±1/pn〉,OK〈T±1/p
n〉) for K a perfectoid field.

Set X = X1. Then “ lim←−n ”Xn is an affinoid perfectoid in Xproét.
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